

PIONEERS IN COLLABORATIVE RESEARCH[®]

2003 International Conference*Characterization & Metrology for ULSI Technology*

CMOS Devices and Beyond *A Process Integration Perspective*

Jim Hutchby1, Victor Zhirnov1,2, Ralph Cavin1, George Bourinanoff3

1 Semiconductor Research Corporation

2 Materials Science & Engineering Dept., North Carolina State University 3 Intel Corporation and SRC

March 25, 2003

Conventional Bulk-Si MOSFET Scaling Issues

12

Primary barriers to MOSFET scaling are:

- ♦ **High Ion/Ioff ratio (Ioff = Channel leakage current)**
- **Low Standby leakage current (Gate + Channel leakage)**
	- –**Low channel leakage current (Electrostatic scaling)**
	- **Low gate leakage current**

2001 ITRS Projections Vs. Simulations of Direct Tunneling Gate Leakage Current Density for *Low Power Logic*

Implementation of high-k will be driven by Low Power Logic in 2005

92

2001 ITRS Projections Versus Simulations of Gate Leakage Current Density for *High-Performance Logic*

CMOS Devices and Beyond Outline

CMOS Devices ...

- MOSFET Scaling Issues
- Non-Classical CMOS Structures
	- $\mathcal{L}_{\mathcal{A}}$ Ultra-Thin Body MOSFETs
	- г Channel Engineered Structures
	- E FinFETs
	- Г Double Gate Structures

… And Beyond - Novel FET Structures and/or New Information Processing Architectures

- Potential of Molecular, Nanowire and Nanotube Electronics
	- г MOSFET-like switches?
	- E New Information Processing Technology?
- Limits on Integration Density Device Size or Power?

Conclusions

PIONEERS IN COLLABORATIVE RESEARC

2003 International Conference*Characterization & Metrology for ULSI Technology*

CMOS Devices …. *A Process Integration Perspective*

Maintaining historical CMOS performance trend requires new semiconductor materials and structures by 2008-2010... Earlier if current bulk-Si data do not improve significantly.

New Materials & Non-Classical Structures for CMOS

Year

Nano-FET Scaling Fundamental Issues

E ^y for *constant inversion charge* **range for four device architectures**

Change Architecture, "bulk-Si" universal mobility but reduced doping

Schematic cross section of planar bulk, UTB SOI, and DG SOI MOSFET

Ultra-Thin-Body MOSFET

Advantages

- ◆ Suppresses channel leakage
- ♦ \bullet Improves V_t controllability
- ◆ Raised Si/Ge source/drain $improves I_{on}$

Challenges

- \blacklozenge Requires ultra thin silicon channel
- ◆ Gate Stack
- ◆ Device characterization
- ◆ Compact model parameter extraction

Issues for bulk-Si MOSFET scaling obviated

- Body does not need to be heavily doped
- \ast T_{ox} does not need to be scaled as aggressively EOT can be 5% lower for same *Igate* however (L. Chang *et al.*, *IEDM 2001*)
- Ultra-shallow S/D junction formation is not an issue
- **Body thickness must be less than ~1/3 x** *Lgate* Scale length $l = \sqrt{T_{ox}} d \; \varepsilon_{si} / \varepsilon_{ox} + d^2 / 2$ where \boldsymbol{d} = $\boldsymbol{\tau_{si}}$ $l = \sqrt{T_{ox}d \varepsilon_{si}}/\varepsilon_{ox} + d^2$

Formation of uniformly thin body is primary challenge

U.C. Berkeley: S. - J. King

Theoretical mobility as function of silicon film. At Tsoi = 3 - 5 nm, mobility becomes higher than that in bulk Si MOSFET.

(S.Takagi et al.; SSDM '97, p.154)

Advanced Gate Stack Materials for Thin-Body SOI MOSFETs

•**High-**κ **gate dielectrics**

Desirable for reducing *Tox,eq* to

- $\overline{}$ ■ improve *l_{dsat}*
- г reduce short-channel effects

Metal gate materials

Desirable to

- г eliminate gate depletion effect
- reduce gate-line resistance

<code>Necessary</code> to achieve proper $\boldsymbol{V_t}$ in UTB MOSFETs (due to low body doping $N_{body}^{})$

U.C. Berkeley: S. - J. King

Thin-Body MOSFET V_t Control Gate Work-Function Engineering

- **Low and symmetrical** *V*_i's are desirable
	- **dual N +/P + poly-Si**

$$
\Rightarrow V_{tn} = -V_{tp} = -0.1V \leftarrow too \; low
$$

- mid-gap gate material

⇒ V_{tn} = -V_{tp} = 0.4V \leftarrow too high

 Need dual-work-function metal gates w/ tunable Φ*M* ~4.5V for NMOS; ~4.9V for PMOS

U.C. Berkeley: S. - J. King

Band Engineered Transistor (Strained Si/SiGe Mobility Enhanced Channel)

Advantages

- \blacklozenge Higher drive current (I_{on})
- ◆ Compatible with bulk and SOI CMOS

MIT - J. Hoyt

Challenges

- ◆ High mobility channel film thickness for SOI
- ◆ Gate stack
- ♦ Integration process
- ♦ Device characterization

Mobility Enhancement in Strained-Si-Channel n-MOSFETs

FinFET Structure

Advantages Challenges

- \blacklozenge Higher drive current (I_{on})
- ◆ Improved subthreshold V_{t} slope
- ◆ Improved short channel effect (electrostatics)
- ◆ Stacked NAND gate

- ◆ Silicon film thickness
- ◆ Gate stack
- ◆ Process complexity
- \triangle Gate width available in integral steps
- ◆ Accurate TCAD

FinFET Scaling

•

◆ Compared with UTB-MOSFET:

- Reduced short-channel effects => more scalable
- **❖ Higher current drive due to**
	- $\overline{}$ steeper subthreshold swing (60 mV/dec)
	- $\mathcal{L}_{\mathcal{A}}$ lower channel electric field => higher carrier mobilities
- ◆ Fin width must be less than 2/3 x *L_{gate}* \mathbf{Scale} length $l = \sqrt{T_{ox}d}\; \mathcal{E}_{si} / \mathcal{E}_{ox} + d^{\,2}/2 \quad$ where \boldsymbol{d} = 0.5x $\boldsymbol{T_{Si}}$

Formation of narrow fin is primary challenge

sub-lithographic process needed

FinFET V t Roll-Off Characteristics

Subthreshold Swing and DIBL

When Lg/Wfin > 1.5, S < 100mV/dec and DIBL < 0.1V/V.

U.C. Berkeley: S. - J. King

Performance of Intel's Tri-Gate p - and n - MOSFETs (Similar to the FinFET)

Double Gate Transistor

Advantages Challenges

- \blacklozenge Higher drive current (I_{on})
- ◆ Improved subthreshold V_{t} slope
- ◆ Improved short channel effect (electrostatics)
- ◆ Stacked NAND gate

- ◆ Gate alignment
- ◆ Silicon film thickness
- ◆ Gate stack
- ◆ Process complexity
- ◆ Accurate TCAD

Technology Scaling & Challenges

- ◆ High-κ gate dielectrics not necessary to control short-channel effects, but will be helpful for achieving high I $_{\mathrm{dsat}}$ (High-κ gate dielectrics will be necessary for low standby power applications)
- \blacklozenge Parasitic resistance will be an issue for T_{si} < 10nm
	- $\hat{*}$ Raised S/D technology but $\mathsf{C}_{\mathsf{overlap}}$ cannot be too high
	- Schottky S/D technology eventually needed
- ◆ Metal gate electrodes (*different from those used for classical MOSFETs*) will be needed
	- $\textcolor{red}{\bullet}$ Multiple-V_t technology will require tunable metal gate Φ_{M}
- \blacklozenge Structures which are provide for dynamic control of V_t are desired by circuit designers
- \blacklozenge Strained Si (for enhanced mobility) will be difficult to achieve

U.C. Berkeley: S. - J. King

ONEERS **DLLARDRATIVE** RESEARC

2003 International Conference*Characterization & Metrology for ULSI Technology*

…. and Beyond

Fundamental Limits **to Scaling NanoelectronicSwitch Elements**

Scope of Emerging Research Devices

Emerging Informati on Processing Concepts

\blacktriangleright Highest possible integration density

◆ Highest possible speed

• Lowest possible energy consumption

Two Questions

1. What is the best direction to pursue for alternate information processing technologies (e.g., carbon nanotubes, molecular electronics, etc.)?

- ◆ Replicate CMOS technology with new switches, gates, etc., directly one for one sustaining the von Neumann architecture? **Or**
- ◆ Eventually invent and develop a completely new information processing technology and systems architecture?
- 2. What is the best application of CMOS *gate or switch replacement* technologies, e.g., carbon nanotube switches or molecular switches?
	- A completely new technology embodying not only the switch, but also the interconnect, I/O, etc. (completely replace CMOS) **Or**
	- ◆ Use of the CNT or molecular switch to replace the channel of a silicon MOSFET, thus extending the silicon MOSFET infrastructure process technology for a longer time?

Field Effect Transistor Electronic Switch

Distinguishability D implies low probability Π of spontaneous transitions between two wells (error probability)

*D=max***,** Π**=0***D=0***,** Π**=0.5 (50%)**

Classic and Quantum Distinguishability

Limit Performance of Charge Based Switch

s

Minimum Barrier Width

Minimum Switch Width

Maximum Gate Density

$$
a_{\text{crit}} = 0.6 \text{ nm}
$$

 $2.3\!\times\!10$

$$
n = 1 \times 10^{14} \frac{gate}{cm^2}
$$

Minimum state switching
$$
t_{sc} = 2.3 \times 10^{-14}
$$

time

2 $= 2.0 \times 10^{7}$ $=2.0\!\times\!10$ *cm* $\boldsymbol{P}_{chip} = 2.0\!\times\!10^7\,\frac{W}{cm}$

Comparisons with 2001 ITRS (2016)

n = 1.0 x 10¹⁴ gates/cm²

 P = 2.0 x 10⁷ W/cm²

fs

2

- ◆ Gate density
	- $\hat{*}$ This analysis
	- **☆ ITRS** \div ITRS n = 1.4 x 10⁹ gates/cm²
- ◆ Switching time
	- $\hat{*}$ This analysis
	- **☆ ITRS** $t = 150$ fs (CV/I)
- ◆ Power density
	- $\hat{*}$ This analysis
	- \div ITRS $P = 93$ W/cm
- ◆ Power density normalized to density and switching time

 $t = 23$

 $\hat{*}$ This analysis $P = 43$ 3 W/cm² \div ITRS $P = 93$ W/cm $W/cm²$

Comparisons with 2001 ITRS (2016)

Observations

- \blacklozenge Transistor critical dimension limited to \sim 1 nm (In the 2001 ITRS physical gate length = 9 n m for 2016)
- ◆ Power density, not critical dimension, limits gate density to ~ 1 x 10 9 gates/cm 2
- ◆ For the ITRS density and switching time, CMOS is approaching the maximum power efficiency

A Point of View - --

Are the most attractive directions for research?

Near term

Exploration of materials and structures for integration of alternate channels in an otherwise silicon MOSFET structure.

Long term

Synergistic exploration of new materials, structures and information processing architectures.

CMOS Devices and Beyond Conclusions

CMOS Devices ...

- MOSFET Scaling Issues
	- E Low Power MOSFETs WILL need High-K Dielectric in 2005
	- High Performance may stay with SiON Gate Dielectric
- Non-Classical CMOS Structures
	- E Ultra-Thin Body MOSFETs
	- ×. Channel Engineered Structures
	- г FinFETs (Good advancement by several laboratories)
	- E Double Gate Structures

… And Beyond

- Potential of Molecular, Nanowire and Nanotube Electronics
	- Г Near Term - MOSFET-like Switches
	- Long Term New Information Processing Technology
- Limits on Integration Density Power.

FinFET I-V Characteristics

 L_g =15nm, W_{fin}=10nm

U.C. Berkeley: S. - J. King